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Abstract
A method for calculations of the frequency-dependent nonlinear susceptibility
of inorganic materials is implemented in the velocity gauge using a linear
combination of atomic orbitals (LCAO) method within the framework of either
the Hartree–Fock approximation or density functional theory. It is based on the
standard time-dependent diagrammatic perturbation theory and has previously
been applied successfully for atoms and molecules. For inorganic materials,
it requires the eigenvalues and position operator matrix elements at several k

points in the Brillouin zone. A quantitative assessment of the predictability of
the method was made on cubic GaN for which the results of previous theoretical
studies are available.

1. Introduction

Calculations based on quantum mechanical methods have now been routinely applied for the
quantitative prediction of the nonlinear optical (NLO) properties of atomic and molecular
systems [1–4]. In general, these methods are based on perturbation theory methods where
the unperturbed molecular ground state provides a complete set of eigenfunctions in terms
of which the perturbed state can be expanded. These methods generally use the expressions
derived from the theory of Ward [5] and Orr and Ward [6] to calculate the frequency-dependent
NLO properties from the matrix elements of the dipole operator and the energies of molecular
orbitals that are expanded in the LCAO (linear combination of atomic orbitals) scheme.

In this paper, we now propose to implement the Ward theory to calculate nonlinear
susceptibilities of inorganic materials using the LCAO scheme where the electronic structure
can be described in the framework of either the Hartree–Fock (HF) approximation or density
functional theory (DFT). In the LCAO scheme, linear combinations of Gaussian orbitals are
used to construct a localized atomic basis from which Bloch functions are constructed by
a further linear combination with plane-wave phase factors. The LCAO–HF or LCAO–DFT
methods as implemented in the CRYSTAL95 program [7] have been shown to provide a reliable
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description of the structural and electronic properties of a wide variety of ionic and semi-ionic
materials.

It may be noted here that a number of theoretical models have previously been proposed
for second-order susceptibility calculations for semiconducting materials [8–21]. Based on
the first-principles band structure methods, Levine and Allan [13, 14] and Chen et al developed
the formalism which included the local-field corrections. It led to the successful prediction
of static values of the linear and nonlinear susceptibilities of binary semiconductors, for
example GaAs. On the other hand, the Sipe’s group, see [16–18], employed the uncoupled
treatment of the Hamiltonian using the standard time-dependent perturbation theory for
the frequency-dependent susceptibility calculations of semiconductors. Rearranging the
terms in the susceptibility expressions of Aversa and Sipe [16], Rashkeev et al [19–21]
reported the frequency-dependent linear and nonlinear susceptibilities of various binary and
ternary semiconductors, which are in good agreement with the corresponding experimental
values.

In the standard time-dependent perturbation theory, the susceptibility calculations can
be performed in either length- or velocity-gauge formulations depending on the form of
the interaction between the long-wavelength electromagnetic field and the crystalline solid
considered. In the former approach, the interaction is taken to be E · r in which r is the
position operator and E is the electric field. The latter approach, on the other hand, considers
the interaction to be A · p where p is the momentum operator and A is the vector potential
of the field. Although these two formulations are proven to be equivalent through a unitary
transformation [22], each formulation has its own disadvantages [16]. The susceptibility
expressions in the velocity-gauge formulation appear to diverge in the static limit while the
position operator matrix elements can only be used for long wavelengths, for which the spatial
variation of A(r, t) (and E(r, t)) in the Hamiltonian can be neglected. That is, A(r, t) (or
E(r, t)) can be replaced by A(R, t) (or E(R, t)) in the kinetic energy term, where R is a
point taken in the interior of the system of charges.

We begin with the expressions derived by Ward [5] in the standard time-dependent
perturbation theory in the length-gauge formulation, i.e. the perturbation interaction
Hamiltonian between the independent particle and the applied field is treated in the electronic
dipole approximation (E · r). The susceptibility is then directly proportional to the product of
the moment matrix elements between a pair of occupied valence and unoccupied conduction
bands and inversely proportional to the transition energy.

Although the analytical expressions for the nonlinear susceptibilities are derived in the
length gauge by Aversa and Sipe [16], these expressions can also be written in terms of the
velocity matrix element rather than the matrix elements of the position operator. In fact, the
position and momentum operator matrix elements are related, i.e. pmn/m = iωmnrmn when
m and n are exact eigenvectors of the ‘true’ zeroth-order Hamiltonian, H0. This is the reason
why the susceptibilities calculated by the A ·p and E ·r interaction Hamiltonians are identical
when summation over the complete band states is performed. In practice, however, it is often
impossible to perform the summation over a complete band states space. It is thus useful to
know about the convergence behaviour of these two interaction Hamiltonians. The convergence
of the susceptibility calculations with respect to the number of excited states is generally much
slower in the velocity-gauge formulation than that using the length-gauge formulation for a
static electric field or an electric field with long wavelengths. This is illustrated by Cohen-
Tannoudji et al [22] for a classic example of the 1s–2s hydrogen transition in evaluating the
contributions of summations over different intermediate np levels. Accordingly, the most
satisfactory results were obtained from the E ·r Hamiltonian if an incomplete summation over
the excited-state space is performed.
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In the following, we choose R as the origin of the coordinates R = 0 in the E · r

gauge to derive the expressions of linear and nonlinear susceptibilities for the bulk crystal.
Here, the matrix elements in these expressions are those of the velocity operator and the rmn
transition moments will be calculated using the velocity formula as discussed above. Under
these conditions, we can determine the electric dipole moment of the charge distribution with
respect to the origin [22]. The transition energies and moments in the susceptibility expressions
are calculated at the HF or DFT level, where the operator takes an effect on the crystal orbital
functions which are constructed by a LCAO. The susceptibility calculations in our approach,
we believe, has the ability to identify specific virtual excitation processes among the crystalline
bands of a system that make the most significant contributions to the susceptibilities, along
with the advantage of a faster convergence in the summation over a truncated excited-state
space.

In the following section, we give the analytical expressions of the linear and nonlinear
susceptibilities. In section 3, we briefly describe the LCAO method which has been used
to obtain the electronic structure of the material considered here. The convergence test of
the numerical procedure employed here along with the results for the linear and nonlinear
susceptibilities are given in section 4. The summary of the present work is given in section 5.

2. Expressions for susceptibilities

We define the bulk electronic susceptibilities by an expression of the macroscopic polarization
P in terms of the applied electric field E:

P = χ(1) · E + χ(2) · EE + χ(3) · EEE + · · · (1)

where χ(n) is the nth-order susceptibility of the medium.
The total electric field and polarization in terms of their frequency component can also be

written [5] as follows:

E(t) =
∑
n

E(ωn) exp(−iωnt) and P(t) =
∑
n

P (ωn) exp(−iωnt) (2)

where the summation extends over all positive and negative frequencies ωn.
In the one-electron approximation, the wavefunction is taken as an antisymmetrized

product of one-electron orbitals. Assuming that the excited states are due to monoexcitations
from occupied to unoccupied orbitals at each k point, the ground (|g〉) and excited states (|m〉
and |n〉) in terms of Bloch functions can be written as:

|g〉 = |O1(1,k1)O2(2,k2) · · ·Oa(A,ka)Ob(B,kb) · · ·On(N,kn)|
|m〉 = |O1(1,k1) · · ·Ua(A,ka)Ob(B,kb) · · ·On(N,kn)|
|n〉 = |O1(1,k1) · · ·Oa(A,ka)Ub(B,kb) · · ·On(N,kn)|. (3)

where Oi and Uj are the occupied and unoccupied orbitals in the ground state.
The matrix elements over the Block functions are then written as:

〈g|r|m〉 =
∑

Am,Oa→Ua

〈Oa(k)|r|Ua(k′)〉

〈n|r|g〉 =
∑

An,Ob←Ub

〈Ub(k′)|r|Ob(k)〉

and

〈m|r|n〉 =
∑

An,Ob→UbAm,Oa←Ua

[〈Ua(k)|r|Ub(k′)〉δOaOb − 〈Ob(k)|r|Oa(k′)〉δUaUb ]. (4)
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Recall that the matrix element involving the positon operator (e.g. 〈Oa(k)|r|Ua(k′)〉) is, in
fact, calculated using the velocity operator (e.g. 〈Oa(k)|∇|Ua(k′)/ωUaOa 〉) in this study.

In the LCAO scheme, a Bloch function is constructed from a linear combination of the
basis functions ϕµ(k) as follows:

Oa(k) =
∑
µ

caµ(k)ϕµ(k) with ϕµ(k) = 1/
√
N

∑
g

χµ(g) eik·g (5)

where χµ is an atomic orbital in the g cell and N is the number of g cells.
The first-order susceptibility of a crystalline state can then be written as follows:

χ(1)(−ω;ω)ij = e2/(2h̄V )
∑
k

 (k)

×
∑
O,U

[( 〈O|ri |U〉〈U |rj |O〉
ωuo + ω − i$u/2

+
〈O|rj |U〉〈U |ri |O〉
ωuo − ω + i$u/2

)

+

( 〈O|ri |U〉〈U |rj |O〉
ωuo − ω − i$u/2

+
〈O|rj |U〉〈U |ri |O〉
ωuo + ω − i$u/2

)]
(6)

whereV is the unit cell volume and (k) is the geometrical weight factor associated with the k

points of the irreducible Brillouin zone. The energy of the orbitalO at wave vector k is h̄ωO and
the frequency difference is defined as ωUO ≡ ωU −ωO . Spin degeneracy is not included here.

Omitting the resonance case with ($ = 0) and rearranging the terms in equation (6), we
arrive at the following expression:

χ(1)(−ω;ω)ij = e2/(h̄V )
∑

k

 (k)

×
∑
O,U

(
Re 〈O|ri |U〉〈U |rj |O〉

ωuo + ω
+

Re 〈O|rj |U〉〈U |ri |O〉
ωuo − ω

)
. (7)

Owing to the fact that the Bloch functions are expressed in terms of the basis functions
(equation (5)), which in turn are taken as a LCAO expressed as a set of Gaussian-type or-
bitals, the dipole transition integrals between the crystalline orbitals become those of between
Gaussian-type functions. It may be noted here the dipole transition integrals over Bloch func-
tions in a periodic solid are not defined uniquely in the length gauge. This problem, as described
before, can be solved by setting the original cell of g to be zero [23, 24]. That is, we can write

〈O|r|U〉 =
∑

C∗OµCUν
∑
g

〈χµ(0)|r|χν(g)〉 exp(ik · g). (8)

Similarly, the expression for the second-order optical susceptibility can be written as:

χ(2)(−ω3;ω1, ω2) = −1

2

e3

h̄2

K

V

∑
k

 (k)
∑
Oa,Ob

∑
Ua,Ub

{〈Oa|ri |Ua〉[〈Ua|rk|Ub〉δOaOb

−〈Ob|rk|Oa〉δUaUb ]〈Ub|rj |Ob〉W1 + 〈Oa|rj |Ua〉[〈Ua|rk|Ub〉δOaOb
−〈Ob|rk|Oa〉δUaUb ]〈Ub|ri |Ob〉W2 + 〈Oa|ri |Ua〉[〈Ua|rj |Ub〉δOaOb
−〈Ob|rj |Oa〉δUaUb ]〈Ub|rk|Ob〉W3 + 〈Oa|rk|Ua〉[〈Ua|rj |Ub〉δOaOb
−〈Ob|rj |Oa〉δUaUb ]〈Ub|ri |Ob〉W4 + 〈Oa|rk|Ua〉[〈Ua|ri |Ub〉δOaOb
−〈Ob|ri |Oa〉δUaUb ]〈Ub|rj |Ob〉W5 + 〈Oa|rj |Ua〉[〈Ua|ri |Ub〉δOaOb
−〈Ob|ri |Oa〉δUaUb ]〈Ub|rk|Ob〉W6} (9)
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where

W1 = [(ωUaOa + ω1 + ω2)(ωUbOb + ω1)]
−1 + [(ωUaOa − ω1 − ω2)(ωUbOb − ω1)]

−1

W2 = [(ωUaOa − ω1)(ωUbOb − ω1 − ω2)]
−1 + [(ωUaOa + ω1)(ωUbOb + ω1 + ω2)]

−1

W3 = [(ωUaOa + ω1 + ω2)(ωUbOb + ω2)]
−1 + [(ωUaOa − ω1 − ω2)(ωUbOb − ω2)]

−1

W4 = [(ωUaOa − ω2)(ωUbOb − ω1 − ω2)]
−1 + [(ωUaOa + ω2)(ωUbOb + ω1 + ω2)]

−1

W5 = [(ωUaOa − ω2)(ωUbOb + ω1)]
−1 + [(ωUaOa + ω2)(ωUbOb − ω1)]

−1

W6 = [(ωUaOa − ω1)(ωUbOb + ω2)]
−1 + [(ωUaOa + ω1)(ωUbOb − ω2)]

−1. (10)

The second-order NLO susceptibility of a crystalline state can therefore be computed
using (9). Depending on the combination of frequencies ω1 and ω2, we can obtain values
of the coefficient of various NLO processes, for example second harmonic generation, linear
electro-optic effect and sum and difference frequency generation.

To obtain the contributions from interband and intraband transitions for χ(2) we consider
the following three cases:

(i) Oa = Ob and Ua = Ub

χ(2)vc (−ω3;ω1, ω2) = −1

2

e3

h̄2

K

V

∑
k

 (k)

×
∑
Oa,Ua

{〈Oa|ri |Ua〉[〈Ua|rk|Ua〉 − 〈Oa|rk|Oa〉]〈Ua|rj |Oa〉W ′1

+〈Oa|rj |Ua〉[〈Ua|rk|Ua〉 − 〈Oa|rk|Oa〉]〈Ua|ri |Oa〉W ′2
+〈Oa|ri |Ua〉[〈Ua|rj |Ua〉 − 〈Oa|rj |Oa〉]〈Ua|rk|Oa〉W ′3
+〈Oa|rk|Ua〉[〈Ua|rj |Ua〉 − 〈Oa|rj |Oa〉]〈Ua|ri |Oa〉W ′4
+〈Oa|rk|Ua〉[〈Ua|ri |Ua〉 − 〈Oa|ri |Oa〉]〈Ua|rj |Oa〉W ′5
+〈Oa|rj |Ua〉[〈Ua|ri |Ua〉 − 〈Oa|ri |Oa〉]〈Ua|rk|Oa〉W ′6} (11)

where we replace ωUbOb by ωUaOa in Wi to write W ′i since the summation indices are
limited to Oa = Ob and Ua = Ub;

(ii) Oa = Ob and Ua �= Ub

χ(2)vcc(−ω3;ω1, ω2) = −1

2

e3

h̄2

K

V

∑
k

 (k)

×
∑
Oa

∑
Ua,Ub

{〈Oa|ri |Ua〉〈Ua|rk|Ub〉〈Ub|rj |Oa〉W ′′1

+〈Oa|rj |Ua〉[〈Ua|rk|Ub〉〈Ub|ri |Oa〉W ′′2
+〈Oa|ri |Ua〉[〈Ua|rj |Ub〉〈Ub|rk|Oa〉W ′′3
+〈Oa|rk|Ua〉[〈Ua|rj |Ub〉〈Ub|ri |Oa〉W ′′4
+〈Oa|rk|Ua〉[〈Ua|ri |Ub〉〈Ub|rj |Oa〉W ′′5
+〈Oa|rj |Ua〉[〈Ua|ri |Ub〉〈Ub|rk|Oa〉W ′′6 } (12)

where we replace ωUbOb by ωUbOa in Wi to write W ′′i since the summation indices are
limited to Oa = Ob;

(iii) Oa �= Ob and Ua = Ub

χ(2)vvc(−ω3;ω1, ω2) = 1

2

e3

h̄2

K

V

∑
k

 (k)
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×
∑
Oa,Ob

∑
Ua

{〈Oa|ri |Ua〉〈Ob|rk|Oa〉〈Ua|rj |Ob〉W ′′′1

+〈Oa|rj |Ua〉〈Ob|rk|Oa〉〈Ua|ri |Ob〉W ′′′2

+〈Oa|ri |Ua〉〈Ob|rj |Oa〉〈Ua|rk|Ob〉W ′′′3

+〈Oa|rk|Ua〉〈Ob|rj |Oa〉〈Ua|ri |Ob〉W ′′′4

+〈Oa|rk|Ua〉〈Ob|ri |Oa〉〈Ua|rj |Ob〉W ′′′5

+〈Oa|rj |Ua〉〈Ob|ri |Oa〉〈Ua|rk|Ob〉W ′′′6 } (13)

where we replace ωUbOb by ωUaOb in Wi to write W ′′′i since the summation indices are
limited to Ua = Ub.
Combining equations (11)–(13), we can write

χ(2)(−ω3;ω1, ω2) = χ(2)vcc + χ(2)vvc + χ(2)vc (14)

where the double or triple summation indices are unequal for the terms χ(2)vcc, χ
(2)
vvc and χ(2)vc .

Here, χ(2)vc represents contributions from the pure interband processes that result in electronic
transitions from the valence to the conduction bands. The χ(2)vcc term includes contributions
from the polarization effects associated with the interband transition, whereas χ(2)vvc includes
the relaxation effects of the (occupied) valence bands associated with the interband transition.
The contributions from χ(2)vcc and χ(2)vvc generally tend to cancel each other and therefore, in
the length gauge, χ(2)vc with a high symmetrical tensor index contributes substantially to the
second-order susceptibility of crystalline materials. Note thatχ(2)vc is zero in the velocity gauge.

3. Computational details

The periodic LCAO scheme as implemented in the CRYSTAL95 program [7] was used for
electronic structure calculations. It may be noted here that this program package offers a
unique feature which allows a direct comparison of the HF and DFT results employing the
same computational conditions for a given material. Here, the Bloch functions, Oi(r), are
solutions of the one-particle equations:

H0Oi(r) = εiOi(r) (15)

where

H0(HF) = T + V + J + K (16)

or

H0(DFT) = T + V + J + νx−c. (17)

Here T , V and J are the kinetic, external potential and Coulomb operators, respectively. The
exchange operator K of the HF method is replaced by the exchange–correlation potential νx−c

in the DFT method. The exchange term is calculated exactly and the correlation term is ignored
in the HF calculations. On the other hand, the DFT calculations describe the exchange and
correlation terms in a generalized gradient approximation (GGA) corresponding to non-local
exchange and correlation potentials of Becke [25] and Perdew and Wang [26].

It is well known that both the HF and DFT methods suffer from the so-called band-
gap problem; the HF method systematically overestimates the gap between the occupied
(i.e. valence band) and unoccupied orbitals (i.e. conduction band) while the DFT method
underestimates the gap. To correct the band-gap problem, we follow the approach of Levine
and Allan [13] who used the scissor-operator approximation to reproduce the experimental
value of the gap for a given material. The justification of this approach comes from the fact
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that first-principles calculations that include self-energy corrections generally yield a rigid shift
(,) of the conduction bands in most zinc-blende semiconductors [27]. In the present work,
the transition energy h̄ωUO was replaced by h̄ωUO + ,/h̄, while the matrix elements of the
position operator remain unchanged in the scissor-operator approximation.

The accuracy and reliability of the present method is now assessed by considering gallium
nitride (GaN) in the cubic (zinc blende) phase. We note here that GaN is not only a prototype
of a number of theoretical investigations [18, 19, 28], but is also a technologically important
material for applications in tunable electro-optical devices [29–31].

4. Results and discussion

4.1. Convergence

In the present method, the crystalline state functions are first obtained by solving self-
consistently either the HF or Kohn–Sham one-electron equations and are then used to calculate
susceptibilities as outlined in section 2. Since the summation over excited states is replaced
by a sum over the occupied (O) and virtual (U ) orbitals and over k with a geometrical weight
 (k) in (9), we need to study the convergence issues associated with the summations over
orbitals and k points for the susceptibility calculations.

The sum-over-states expansion, in principle, requires a mixing of the ground state with
several excited states under an applied field. In practice, a truncation of the expansion over
the unoccupied orbitals (i.e. conduction bands) is, however, performed. Therefore, a test
of apparent convergence of χ(2) is required with respect to this truncation. The second
convergence parameter is the number of k points considered for the irreducible Brillouin
zone integration in the numerical procedure used here for susceptibility calculations.

For the cubic GaN, χ(2)xyz appears to converge in calculations that used at least 50 or more
k points for the irreducible Brillouin zone integration. Likewise, a faster convergence of χ(2)

with respect to a number of crystal bands was seen, indicating that fact that the inclusion of
only few conduction bands in the summation series can yield reliable values of χ(2). In the
following discussion we have considered 104 k points for the cubic GaN and have included
all of the valence and conduction bands generated by our LCAO model in the susceptibility
calculations.

4.2. Comparison with previous calculations

Table 1 lists the calculated values of the dielectric constant and the susceptibilities for GaN
in the zinc blende phase and, also, compares these with the corresponding values obtained in
previous first-principles studies. We also list the ε and χ(2) values calculated at 1064 nm in
table 1 in order to facilitate a comparison with the experimental data usually obtained at this
wavelength. As discussed earlier, the scissor operator was used to match the calculated gap to
the experimental value. It is found to be +1.24 and−7.87 eV for the gaps calculated using the
DFT and HF approximations, respectively, for the cubic GaN. It may be noted here that the
DFT calculations generally underestimate the gap whereas the HF calculations overestimate
the gap in most of the semiconducting materials.

Although the ‘corrected’ gap of the cubic GaN is the same in both the HF and the GGA–
DFT calculations, the HF values (see table 1) appear to be higher for ε and lower forχxyz relative
to the corresponding GGA values. Overall, the agreement of the susceptibility values obtained
in the present study with the calculated values obtained using the local density approximation
with the pseudopotentials or muffin-tin orbitals method appears to be good. We do not include
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Table 1. Calculated static and frequency-dependent values of the dielectric function (ε) and the
susceptibility (χ , in pm V−1) for the cubic GaN. The scissor-operator approximation was used to
reproduce the experimental value of the band gap.

Method εxx(0) εxx (λ = 1064 nm) χxyz(0) χxyz(λ = 1064 nm)

This work
GGA–LCAO, no scissor operator 4.91 5.06 13.3 14.48
GGA–LCAO, scissor operator 3.41 3.45 8.06 8.52
HF–LCAO, scissor operator 6.62 6.74 7.04 7.08

Chen et al [15]
LDA–pseudopotentiala, no scissor operator 5.74 — 16.9 —

Rashkeev, Lambrecht and Segall [19]
LDA–LMTO, no scissor operator — — 18.3 —
LDA–LMTO, scissor operator — — 10.6 —

a The calculated results include local field corrections.

the local field corrections in the present calculations which are generally known to increase
the values by 10% in the zero frequency limit [14].

Finally, we identify the distinct physical contributions arising from the optical perturbation
to the crystal susceptibility. In general, the derived formulae for the second-order response
include various terms, and their partition into the so-called intraband and interband terms is
rather conventional and depends somewhat on the formulation of the problem [2, 5, 23]. In the
present model,χvc represents an interband process of transitions from the valence to conduction
bands (see equation (11)) and its value is directly related to changes in the crystal orbital dipole
moments occurring during the transition (i.e. −,µa = e[〈Ua|R|Ua〉 − 〈Oa|R|Oa〉]). It may
be noted here that its value is zero in the velocity gauge. The terms χvvc and χvcc, as defined
in equation (14), described mixed interband and intraband processes that include one and two
conduction band states in the spectral sum. It is expected that the so-called polarization effects
introduced by the electrons in the conduction bands upon excitation can be described by the
χvcc term. On the other hand, the χvvc term includes the so-called relaxation effects of the
valence bands occurring due to the promotion of electrons to conduction bands. For the cubic
GaN, both the χvvc and χvcc terms are found to provide an almost equal contribution to the
calculated second harmonic generation (SHG) susceptibilities, in agreement with the results
of previous calculations [14] on the similar cubic semiconductors, namely AlP, AlAs, GaP and
GaAs.

5. Summary

We have developed a method to calculate the linear and second-order NLO susceptibilities for
a crystalline material in the velocity-gauge Hamiltonian employing either the HF theory or the
DFT. The state wavefunction can be described by a simple configuration function, in which
the determinable function is constructed by one-electron crystal orbitals which are a LCAO
in this formalism. The reliability of the calculated results are evaluated using cubic GaN for
which the results of several previous theoretical studies are available.
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